A. Chute verticale.

On se propose d'établir un modèle mathématique et de comparer une série de valeurs expérimentales avec ce modèle.

Les différentes étapes :

- I. Pointage de la position d'un objet en chute verticale avec le logiciel Avimeca2.
- II. Construction d'un modèle en kv par la méthode d'Euler à l'aide du tableur Excel.
- III. Construction d'un modèle en kv^2 par la méthode d'Euler à l'aide du tableur Excel.
- IV. Discussion.

I. POINTAGE DE LA POSITION D'UN OBJET EN CHUTE VERTICALE AVEC LE LOGICIEL AVIMECA2.

Ouvrir Avimeca2.

Dans Avimeca2: Ouvrir le fichier (clip vidéo) > chute frottement

Avant le pointage : Etalonnage

- Origine et sens

- Echelle verticale (le garçon mesure 1,85 m)

Pointage: Mesure

- pointer chaque position des ballons dans un axe vertical.

Transfert des données sur Regressi :

- Fichier > Regressi > Exécuter Regressi

Dans Regressi : Cliquer sur Annuler lors de l'apparition de la première fenêtre.

Variables (click droit sur la colonne y) > Créer grandeur > Dérivée $(\frac{dy}{dt})$

uages de points.

Variables (click droit sur la colonne vy) > Copier tableau

Dans Excel: Coller (Puis éliminer les valeurs incohérentes avec click droit > supprimer)

Tracer $v_y = f(t)$ en sélectionnant les colonnes A et C, puis

Nouvelle feuille.

Enregistrer sous > Bureau > Physique-Chimie

CONSTRUCTION D'UN MODELE EN kv PAR LA METHODE D'EULER A L'AIDE DU TABLEUR EXCEL.

Rappel:

$$v_{n+1} = v_n + a_n \cdot \Delta t$$

$$a_n = A - Bv_n$$

Avec
$$A = 6.95$$

et
$$B = 2.84$$

Introduction des formules dans Excel:

1. Entrer les dates de 0 à 1,6 s avec la formule suivante et ensuite tirer avec la souris à partir du coin inférieur droit de la case comme l'indique la flèche.

	ABS ▼	X V = =A2+0,02		
	Α	В	С	
1	0			
2	0,02			
3	=A2+0,0 2			
4				
5				
6				
		7		

2. Entrer la formule correspondante à v_{n+1} :

	ABS ▼	X 🗸 = =	B1+C1*0,0 2
	Α	В	С
1	0	0	6,95
2	0,0 2	=B1+C1*0,0	2
3	0,04		
4	80 ,0		

3. Entrer la formule correspondante à a_n :

ABS ▼ X √ = =6,95-2,84*B2						
	Α	В	С	D		
1	0	0	6,95			
2	0,04	0,278	=6,95-2,84*B2	2		
3	80,0					
4	0,12					
5	0,16					

- 4. Tirer les deux colonnes B et C avec la souris.
- 5. Tracer le graphe $v_{n+1} = f(t)$

CONSTRUCTION D'UN MODELE EN kv^2 PAR LA METHODE D'EULER A L'AIDE DU TABLEUR EXCEL.

Tracer le graphe $v_{n+1} = f(t)$ en utilisant la méthode précédente sur la même feuille excel.

Rappel: $v_{n+1} = v_n + a_n \cdot \Delta t$

$$a_n = A - Cv_n^2$$

Avec
$$A = 6.95$$
 et

$$C = 1,16$$

Astuces:

Pour mettre au carré

Pour tracer plusieurs graphes superposés

(CTRL + click sur les lettre des colonnes sélectionnées)

Discussion.

Quel modèle selon vous convient le mieux afin de décrire la chute des ballons dans l'air ?