A. Chute verticale.

On se propose d'établir un modèle mathématique et de comparer une série de valeurs expérimentales avec ce modèle.

Les différentes étapes :

- I. Pointage de la position d'un objet en chute verticale avec le logiciel Avimeca2.
- II. Construction d'un modèle en kv par la méthode d'Euler à l'aide du tableur Excel.
- III. Construction d'un modèle en kv^2 par la méthode d'Euler à l'aide du tableur Excel.
- IV. Discussion.

I. POINTAGE DE LA POSITION D'UN OBJET EN CHUTE VERTICALE AVEC LE LOGICIEL AVIMECA2.

Ouvrir Avimeca2.

Dans Avimeca2 : Ouvrir le fichier (clip vidéo) > chute frottement

Avant le pointage : Etalonnage

- Origine et sens
 - Echelle verticale (le garçon mesure 1,85 m)

Pointage : Mesure

pointer chaque position des ballons dans un axe vertical.

Transfert des données sur Regressi :

_

- Fichier > Regressi > Exécuter Regressi

Dans Regressi : Cliquer sur Annuler lors de l'apparition de la première fenêtre.

	Variables (click droit sur la colonne y) > Créer grandeur > Dérivée $(\frac{dy}{dt})$
	Variables (click droit sur la colonne vy) > Copier tableau
Dans Excel :	Coller (Puis éliminer les valeurs incohérentes avec click droit > supprimer)
	Tracer $v_y = f(t)$ en sélectionnant les colonnes A et C, puisLes colonnes A et C, puisNouvelle feuille.Enregistrer sous > Bureau > Physique-Chimie

Rappel : $v_{n+1} = v_n + a_n \Delta t$ $a_n = A - Bv_n$ Avec A = 6,95 et B = 2,84

Introduction des formules dans Excel :

1. Entrer les dates de 0 à 1,6 s avec la formule suivante et ensuite tirer avec la souris à partir du coin inférieur droit de la case comme l'indique la flèche.

ABS ▼ X √ = =A2+0,02					
	Α	В	С		
1	0				
2	0,0 2	_			
3	=A2+0,0 2				
4					
5					
6		_			

2. Entrer la formule correspondante à v_{n+1} :

ABS X √ = =B1+C1*0,02					
	A	В	С		
1	0	0	6,95		
2	0,0 2	=B1+C1*0.02			
3	0,0 4				
4	80 ,0				

3. Entrer la formule correspondante à a_n :

ABS ▼ × < = =6,95-2,84*B2						
	A	В	С	D		
1	0	0	6,95			
2	0,04	0,278	=6,95-2,84*B	2		
3	0,08					
4	0,12					
5	0,16					

- 4. Tirer les deux colonnes B et C avec la souris.
- 5. Tracer le graphe $v_{n+1} = f(t)$

CONSTRUCTION D'UN MODELE EN kv^2 PAR LA METHODE D'EULER A L'AIDE DU TABLEUR EXCEL.

Tracer le graphe $v_{n+1} = f(t)$ en utilisant la méthode précédente sur la même feuille excel.

 $a_n = A - C v_n^2$

Rappel : $v_{n+1} = v_n + a_n \Delta t$

Avec A = 6,95 et C = 1,16

Astuces : Pour mettre au carré (^2) Pour tracer plusieurs graphes superposés

(CTRL + click sur les lettre des colonnes sélectionnées)

Discussion.

Quel modèle selon vous convient le mieux afin de décrire la chute des ballons dans l'air ?