TP	n° '	10 ·	Comment	caractériser une	transformation	on chimique	qui n'est na	s totale?
11	11	111.	COMMINICAL	caracteristi unc	панымпинац	лі спипиць	uui ii cat na	s ionaic :

Objectif : Mettre en évidence l'existence de transformations chimiques qui ne sont pas totales et montrer que celles-ci peuvent se faire dans les deux sens.

I. <u>Expérience 1 : Réaction entre l'eau et l'acide éthanoïque.</u>

On utilise les solutions suivantes :

 S_1 : solution d'acide éthanoïque de concentration $C = 1,00 \times 10^{-1}$ mol.L⁻¹ préparée par le professeur.

S₂: solution S₁ diluée au 1/10^{ème} (100 mL à préparer par les élèves)

- Etalonner le pHmètre avec une solution tampon de pH connu.
- Mesurer le pH des deux solutions S_1 , et S_2 .

Solution	S_1	S_2
рН		

Questions:

- 1. Les valeurs de pH mesurées permettent-elles de dire qu'il y a eu réaction entre l'eau et l'acide éthanoïque (acide acétique) ? S oui, écrire l'équation de cette transformation chimique.
- 2. Respectivement pour les solutions S_1 et S_2 , faire un bilan de matière et déterminer x_{final} (avancement final) sachant que $[H_3O^+] = 10^{-pH}$. On choisira de prendre un **volume de 1L** pour les calculs de quantité de matière.

Espèces chimiques S ₁		
t = 0 (mol)	beaucoup	
Lors de la mesure du pH (mol)	beaucoup	
Espèces chimiques S ₂		
t = 0 (mol)	beaucoup	
Lors de la mesure du pH (mol)	beaucoup	

- 3. On peut déterminer x_{final} en mesurant le pH, si on fait une hypothèse sur la <u>cinétique</u> de la réaction. Quelle est cette hypothèse ? Est-ce le cas dans cette expérience ?
- 4. Quelles sont les valeurs de x_{max} (avancement maximale si la réaction est totale) pour les solutions S_1 et S_2 ?
- 5. Calculer le rapport $\frac{x_{\text{final}}}{x_{\text{final}}}$, appelé taux d'avancement final pour ces deux solutions. Rappel : le volume utilisse est V = 100 mL.
- 6. Quelle est la réaction la plus avancée ?
- 7. Conclusions :

 La réaction totale.

 Une réaction est plus avancée quand l'acide est plus

II.	Expérience 2 : Réaction entre l'acide chlorhydrique et une solution d'éthanoate de sodium.
On uti	lise les solutions suivantes :
S' ₁ : so	olution d'acide chlorhydrique de concentration $C = 1,00 \times 10^{-1} \text{ mol.L}^{-1}$ préparée par le professeur.

 S'_2 : mélange de 1,00 \times 10⁻² mol d'acétate de sodium (solide) dans 100 mL de S'_1 préparée par les élèves.

Donnée: la masse molaire de l'acétate de sodium est égal à 82,03 g.mol⁻¹.

• Mesurer le pH des deux solutions S'₁ et S'₂.

Solution	S' ₁	S' ₂
pН		

Questions:

- 1. Les valeurs de pH mesurées permettent-elles de dire qu'il y a eu réaction entre l'acétate de sodium et l'acide chlorhydrique ? Si oui, écrire l'équation de cette transformation.
- 2. Quelle hypothèse fait-on sur le rôle des ions sodium Na⁺ et chlorure Cl⁻ dans cette transformation ?
- 3. Pour la solution S'₂, faire un bilan de matière et déterminer x_{final} .

Espèces chimiques			
t = 0 (mol)			beaucoup
Lors de la mesure du pH (mol)			
	ner x_{max} (avancement mathematical le volume utilisé est V =	totale) et le taux d'avanc	ement final $\frac{x_{\text{final}}}{x_{\text{maximal}}}$.

	Déterminer x_{max} (avancement maximal si la réaction était totale) et le taux d'avancement final Rappel : le volume utilisé est $V = 100 \text{ mL}$. Conclusions :	$\frac{x_{\text{final}}}{x_{\text{maximal}}}$.
	es réactions peuvent se faire dans les deux sens. y a superposition de deux transformations chimiques :	
(1))++++	
(2))++++	
Al	ors on peut introduire un nouveau symbolisme d'écriture, le signe =.	
	+++	